Site-directed mutagenesis of firefly luciferase active site amino acids: a proposed model for bioluminescence color.

نویسندگان

  • B R Branchini
  • R A Magyar
  • M H Murtiashaw
  • S M Anderson
  • L C Helgerson
  • M Zimmer
چکیده

Under physiological conditions firefly luciferase catalyzes the highly efficient emission of yellow-green light from the substrates luciferin, Mg-ATP, and oxygen. In nature, bioluminescence emission by beetle luciferases is observed in colors ranging from green (approximately 530 nm) to red (approximately 635 nm), yet all known luciferases use the same luciferin substrate. In an earlier report [Branchini, B. R., Magyar, R. M., Murtiashaw, M. H., Anderson, S. M., and Zimmer, M. (1998) Biochemistry 37, 15311-15319], we described the effects of mutations at His245 on luciferase activity. In the context of molecular modeling results, we proposed that His245 is located at the luciferase active site. We noted too that the H245 mutants displayed red-shifted bioluminescent emission spectra. We report here the construction and purification of additional His245 mutants, as well as mutants at residues Lys529 and Thr343, all of which are stringently conserved in the beetle luciferase sequences. Analysis of specific activity and steady-state kinetic constants suggested that these residues are involved in luciferase catalysis and the productive binding of substrates. Bioluminescence emission spectroscopy studies indicated that point mutations at His245 and Thr343 produced luciferases that emitted light over the color range from green to red. The results of mutational and biochemical studies with luciferase reported here have enabled us to propose speculative mechanisms for color determination in firefly bioluminescence. An essential role for Thr343, the participation of His245 and Arg218, and the involvement of bound AMP are indicated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-directed mutagenesis of firefly luciferase: implication of conserved residue(s) in bioluminescence emission spectra among firefly luciferases.

The bioluminescence colours of firefly luciferases are determined by assay conditions and luciferase structure. Owing to red light having lower energy than green light and being less absorbed by biological tissues, red-emitting luciferases have been considered as useful reporters in imaging technology. A set of red-emitting mutants of Lampyris turkestanicus (Iranian firefly) luciferase has been...

متن کامل

Improved Red-emitting Firefly Luciferase Mutant for Biotechnical Applications

p 3 Introduction pgs 5-10 Materials and Methods pgs 10-18 Materials General Methods Site-directed Mutagenesis Insertion of Promega’s CBRluc into the pGEX-6P-2 vector Protein Expression and Purification Bioluminescence activity-based light assays Heat inactivation studies Bioluminescence emission spectra Microplate luminometer assays Mammalian cell experiments by Promega collaborators: -Transfec...

متن کامل

Spectroscopic studies of the color modulation mechanism of firefly (beetle) bioluminescence with amino-analogs of luciferin and oxyluciferin.

Spectroscopic properties of amino-analogs of luciferin and oxyluciferin were investigated to confirm the color modulation mechanism of firefly (beetle) bioluminescence. Fluorescence solvatochromic character of aminooxyluciferin analogs indicates that the bioluminescence of aminoluciferin is useful for evaluating the polarity of a luciferase active site.

متن کامل

Site-Directed Mutagenesis, Expression and Biological Activity of E. coli 5-Enolpyruvylshikimate 3-Phosphate Synthase Gene

Site-directed mutagenesis (SDM) as a powerful technique was used to change two important and conserved amino acids in 5-enolpyruvylshikimate 3- phosphate synthase (EPSPS) gene of E. coli. The mutations changed glycine 96 to alanine and alanine 183 to threonine. These two amino acids are very important for intraction of the wide spectrum herbicide, glyphosate, to EPSP synthase enzymes. By design...

متن کامل

Mutational analysis of the Vibrio fischeri LuxI polypeptide: critical regions of an autoinducer synthase.

Synthesis of the Vibrio fischeri autoinducer, a signal involved in the cell density-dependent activation of bioluminescence, is directed by the luxI gene product. The LuxI protein catalyzes the synthesis of N-acyl-homoserine lactones from S-adenosylmethionine and acylated-acyl carrier protein. We have gained an appreciation of the LuxI regions and amino acid residues involved in autoinducer syn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 38 40  شماره 

صفحات  -

تاریخ انتشار 1999